Calculus AB 5-1 The Natural Logarithm: Differentiation

Algebraic Definition of Logarithm - the answer to a logarithm is an exponent. Given: $r = v \Rightarrow 0$
logx y= 6
Definition of the Number e- Euler's e= 2.718281828 number
Algebraic Definition of the Natural Logarithm -
ln x = loge X
Definition of the Natural Logarithm Function -
$\ln(x) = \int_{1}^{x} \frac{1}{t} dt$

Show that the function is a solution of the differential equation.

90) $x \ln x - 4x = y$ $y' = [1 \cdot \ln x + x(x) - 4$ $= \ln x - 3$ x + y - xy' = 0 $x + (x \ln x - 4x) - x(\ln x - 3) = 0$ $x + \sqrt{2} \ln x - 4x - \sqrt{2} \ln x + 3x = 0$ 0 = 0

Locate any relative extrema and inflection points.
92)
$$y = x - \ln x$$
 — Domain (0,00)
 $\frac{dy}{dx} = 1 - \frac{1}{x}$ C.P. $0 = 1 - \frac{1}{x}$ fundeFined
 $x = 1$ for the fundamined
 $\frac{d^2 x}{dx^2} = \frac{1}{x^2}$ $\int_{x=1}^{x} = \frac{1}{(y^2)^2} = 1 \Rightarrow \min \operatorname{at}(1, 1)$
 $0 = \frac{1}{x^2}$ no inflection
 \emptyset points.

