Calculus AB
 5-1
 The Natural Logarithm: Differentiation

Function Properties: $f(x)=\ln (x)$

Domain:

Range:
\mathbb{R}

Asymptotes: $\boldsymbol{x}=0$

Use the properties of logarithms to expand the logarithmic expression.

24) $\ln (x y)=\ln x+\ln y+\ln z$
*) $\ln \sqrt[3]{a^{2}+1}=\ln \left(a^{2}+1\right)^{\frac{1}{3}}$

$$
=\frac{1}{3} \ln \left(a^{2}+1\right)
$$

Write the expression as a logarithm of a single quantity.
30) $\ln x+2 \ln y-4 \ln z^{\infty}$
$\ln \frac{x y^{2}}{z^{4}}$
34) $2[\ln x-\ln (x+1)-\ln (x-1)]$

Use function transformations to visualize graph.

Find the derivative of the function.

$$
\begin{aligned}
\text { 50) } & h(x)=\ln \left(2 x^{2}+1\right) \\
=\frac{4 x}{2 x^{2}+1} & y=\ln 2 x-8 \\
= & y y
\end{aligned}
$$

$$
\frac{d}{d x} \ln x=\frac{1}{x}, x>0
$$

Assignment

Day 1
pg 331
7-17 odd
21-35 odd
39-75 odd

Find an equation of the tangent line to the graph of f at the indicated point.
78) $f(x)=4-x^{2}-\ln \left(\frac{1}{2} x+1\right), \quad(0,4)$
$F(x)=-2 x-\frac{\frac{1}{2}}{\frac{1}{2} x+1}=-2 x-\frac{1}{x+2}$
$m=F^{\prime}(0)=-2(0)-\frac{1}{\frac{1}{2}(0)+1}=-\frac{1}{2}$
$y=-\frac{1}{2} x+6$
$4=-\frac{1}{2}(0)+b$
$4=b$ $y=-\frac{1}{2} x+4$

Show that the function is a solution of the differential equation

$$
\begin{aligned}
& \text { 90) } x \ln x-4 x=y \\
& y^{\prime}=\left[1 \cdot \ln x+x\left(\frac{1}{x}\right)\right]-4 \\
&=\ln x-3
\end{aligned}
$$

$x+y-x y^{\prime}=0$
$x+(x \ln x-4 x)-x(\ln x-3)=0$ $x+x \ln x-4 x-2 \ln x+3 x=0$ $0=0$

Locate any relative extrema and inflection points.

$$
\text { 92) } y=x-\ln x \text {-Domain }(0, \infty)
$$

$$
\begin{array}{ll}
\frac{d y}{d x}=1-\frac{1}{x} \quad \text { c.p. } \quad 0=1-\frac{1}{x}\left\{\begin{array}{l}
\text { undefined } \\
\text { at } x \text { io, } \\
x=1
\end{array}\right\} \text { ut not in domain }
\end{array}
$$

$$
\frac{d^{2} y}{d x^{2}}=\left.\frac{1}{x^{2}}\right|_{x=1}=\frac{1}{(1)^{2}}=1 \Rightarrow \min \operatorname{at}(1,1)
$$

Assignment

Day 2
83-95 odd
Continue with 5-2, time permitting.

